Brainstem control of urethral sphincter relaxation and scent marking behavior

Author:

Keller JasonORCID,Chen Jingyi,Simpson Sierra,Wang Eric Hou-Jen,Lilascharoen Varoth,George Olivier,Lim Byung Kook,Stowers Lisa

Abstract

Urination may occur either reflexively in response to a full bladder or deliberately irrespective of immediate need. Voluntary control is desired because it ensures that waste is expelled when consciously desired and socially appropriate1,2. Urine release requires two primary components: bladder pressure and urethral relaxation1–3. Although the bladder contracts during urination, its slow smooth muscle is not under direct voluntary control and its contraction alone is not sufficient for voiding. The decisive action of urination is at the urethral sphincter, where striated muscle permits fast control. This sphincter is normally constricted, but relaxes to enable urine flow. Barrington’s nucleus (Bar, or pontine micturition center) in the brainstem is known to be essential for the switch from urine storage to elimination4–7, and a subset of Bar neurons expressing corticotropin releasing hormone (BarCRH) have recently been shown to promote bladder contraction8–10. However, Bar neurons that relax the urethral sphincter to enable urination behavior have not been identified. Here we describe novel brainstem neurons that control the external urethral sphincter. We find that scent marking behavior in male mice depends upon a subpopulation of spatially clustered Bar neurons that express high levels of estrogen receptor 1 (BarESR1). These neurons are glutamatergic, project to urinary nuclei in the spinal cord with a bias towards sphincter-inhibiting interneurons, and their activity correlates with natural urination. Optogenetic stimulation of BarESR1 neurons rapidly initiates sphincter bursting and efficient voiding in absence of sensory cues in anesthetized and behaving animals. Conversely, inhibiting the activity of these neurons prevents olfactory cues from promoting scent marking behavior. The identification of BarESR1 cells provides an expanded model for the supraspinal control of urination and its dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3