Accelerating Sequence Alignment to Graphs

Author:

Jain Chirag,Dilthey Alexander,Misra Sanchit,Zhang HaowenORCID,Aluru Srinivas

Abstract

AbstractAligning DNA sequences to an annotated reference is a key step for genotyping in biology. Recent scientific studies have demonstrated improved inference by aligning reads to a variation graph, i.e., a reference sequence augmented with known genetic variations. Given a variation graph in the form of a directed acyclic string graph, the sequence to graph alignment problem seeks to find the best matching path in the graph for an input query sequence. Solving this problem exactly using a sequential dynamic programming algorithm takes quadratic time in terms of the graph size and query length, making it difficult to scale to high throughput DNA sequencing data. In this work, we propose the first parallel algorithm for computing sequence to graph alignments that leverages multiple cores and single-instruction multiple-data (SIMD) operations. We take advantage of the available inter-task parallelism, and provide a novel blocked approach to compute the score matrix while ensuring high memory locality. Using a 48-core Intel Xeon Skylake processor, the proposed algorithm achieves peak performance of 317 billion cell updates per second (GCUPS), and demonstrates near linear weak and strong scaling on up to 48 cores. It delivers significant performance gains compared to existing algorithms, and results in run-time reduction from multiple days to three hours for the problem of optimally aligning high coverage long (PacBio/ONT) or short (Illumina) DNA reads to an MHC human variation graph containing 10 million vertices.AvailabilityThe implementation of our algorithm is available at https://github.com/ParBLiSS/PaSGAL. Data sets used for evaluation are accessible using https://alurulab.cc.gatech.edu/PaSGAL.

Publisher

Cold Spring Harbor Laboratory

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3