Classification of unlabeled observations in Species Distribution Modelling using Point Process Models

Author:

Guilbault EmyORCID,Renner Ian,Mahony Michael,Beh Eric

Abstract

1AbstractSpecies distribution modelling, which allows users to predict the spatial distribution of species with the use of environmental covariates, has become increasingly popular, with many software platforms providing tools to fit species distribution models. However, the species observations used in species distribution models can have varying levels of quality and can have incomplete information, such as uncertain species identity.In this paper, we develop two algorithms to reclassify observations with unknown species identities which simultaneously predict different species distributions using spatial point processes. We compare the performance of the different algorithms using different initializations and parameters with models fitted using only the observations with known species identity through simulations.We show that performance varies with differences in correlation among species distributions, species abundance, and the proportion of observations with unknown species identities. Additionally, some of the methods developed here outperformed the models that didn’t use the misspecified data.These models represent an helpful and promising tool for opportunistic surveys where misidentification happens or for the distribution of species newly separated in their taxonomy.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3