Frontal eye field inactivation reduces saccade preparation in the superior colliculus, but does not alter how preparatory activity relates to saccade latency

Author:

Dash Suryadeep,Peel Tyler R.,Lomber Stephen G.,Corneil Brian D.

Abstract

AbstractA neural correlate for saccadic reaction times (SRTs) in the gap saccade task is the level of preparatory activity in the intermediate layers of the superior colliculus (iSC) just before visual target onset: greater levels of iSC preparatory activity precede shorter SRTs. The frontal eye fields (FEF) are one likely source of such iSC preparatory activity, since FEF preparatory activity is also inversely related to SRT. To better understand the FEF’s role in saccade preparation, and the way in which such preparation relates to SRT, in two male rhesus monkeys we examined iSC preparatory activity during unilateral reversible cryogenic inactivation of the FEF. FEF inactivation increased contralesional SRTs, and lowered ipsilesional iSC preparatory activity. FEF inactivation also reduced fixation-related activity in the rostral iSC. Importantly, the distributions of SRTs generated with or without FEF inactivation overlapped, enabling us to conduct a novel population-level analyses examining iSC preparatory activity just before generation of SRT-matched saccades. These analyses revealed no change during FEF inactivation in the relationship between iSC preparatory activity and SRT-matched saccades across a range of SRTs, even for the occasional express saccade. Thus, while our results emphasize that the FEF has an overall excitatory influence on preparatory activity in the iSC, the communication between the iSC and downstream oculomotor brainstem is unaltered for SRT-matched saccades, suggesting that the integration of preparatory and visual signals in the SC just before saccade initiation is largely independent of the FEF for saccades generated in this task.Significance statementHow does the brain decide when to move? Here, we investigate the role of two oculomotor structures, the superior colliculus (SC) and frontal eye fields (FEF), in dictating visually-guided saccadic reaction times (SRTs). In both structures, higher levels of preparatory activity precede shorter SRTs. Here, we show that FEF inactivation increases SRTs and decreases SC preparatory activity. Surprisingly, a population-level analysis of SC preparatory activity showed a negligible impact of FEF inactivation, providing one examines SRT-matched saccades. Thus, while the FEF is one source of preparatory input to the SC, it is not a critical source, and it is not involved in the integration of preparatory activity and visual signals that precedes saccade initiation in simple visually-guided saccade tasks.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3