Abstract
AbstractUnderstanding photosynthetic light harvesting requires knowledge of the molecular mechanisms that dissipate excess energy in thylakoids. However, it remains unclear how the physical environment of light-harvesting complex II (LHCII) influences the process of chlorophyll de-excitation. Here, we demonstrate that protein-protein interactions between LHCIIs affect the optical properties of LHCII and thus influence the total energy budget. Aggregation of LHCII in the dark altered its absorption properties, independent of the amount of prior light exposure. We also revisited the triplet excited state involved in light-induced fluorescence quenching and found another relaxation pathway involving emission in the green region, which might be related to triplet excited energy transfer to neighboring carotenoids and annihilation processes that result in photoluminescence. LHCII- containing liposomes with different protein densities exhibited altered fluorescence and scattering properties. Our results suggest that macromolecular reorganization affects overall optical properties, which need to be addressed to compare the level of energy dissipation.
Publisher
Cold Spring Harbor Laboratory