Inorganic Pyrophosphate Promotes Osteoclastogenic Commitment and Survival of Bone Marrow Derived Monocytes mediated by Egr-1 up-regulation and MITF phosphorylation

Author:

Abdelmagid Samir M.,Zajac Allison,Salhab Imad,Nah Hyun-Duck

Abstract

ABSTRACTSeveral reports emphasized the importance of inorganic pyrophosphate (PPi) in hindering osteoblast differentiation and bone matrix mineralization. Its ubiquitous presence is thought to prevent “soft” tissue calcification, whereas its degradation to Pi in bones and teeth by alkaline phosphatase (ALP) may facilitate crystal growth. While the inhibiting role of PPi on osteoblast differentiation and function is largely understood, less is known about its effects on osteoclast determination and activity. In this study, we investigated the role of PPi in bone resorption using calverial organ cultures ex vivo. We present an evidence that PPi stimulated calvarial bone resorption marked by calcium (Ca2+) release in the condition media (CM). We then examined PPi effects on osteoclast differentiation using mouse bone marrow-derived monocytes (BMMs). Our results revealed that PPi enhanced osteoclast differentiation ex vivo, marked by increased number and size of TRAP-stained mature osteoclasts. Moreover, PPi stimulated osteoclastogenesis in BMMs co-cultured with osteoblasts. These data supported the increased osteoclast activity in bone resorption using functional osteo-assays. The finding of PU.1-Egr-1 dependent up-regulation of c-FMS and RANK receptors in BMMs supported the enhanced pre-osteoclast commitment and differentiation. Moreover, osteoclast survival was enhanced by activation of MITF-BCL-2 pathway that was mediated by MAPK-ERK1/2 signaling. Last, our data showed that PPi up-regulated ANK; PPi transporter, during osteoclast differentiation through ERK1/2 phosphorylation whereas mutation of ANK inhibited osteoclastogenesis. Collectively, our data suggest that PPi promotes osteoclast differentiation, survival, and function through PU.1 up-regulation and MITF phosphorylation whereas ANK loss-of-function inhibited osteoclastogenesis.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3