Microglial synaptic pruning on axon initial segment of dentate granule cells: sexually dimorphic effects on fear response of adult rats subjected to early life stress

Author:

Zetter Mario A.ORCID,Roque AngélicaORCID,Hernández Vito S.ORCID,Hernández-Pérez Oscar R.ORCID,Gómora María J.,Ruiz-Velasco SilviaORCID,Eiden Lee E.ORCID,Zhang LimeiORCID

Abstract

AbstractAxon initial segments (AIS) of dentate granule cells (GC) in hippocampus exhibit prominent spines during early development that are associated with microglial contacts. Here, we asked if developmental changes in axon initial segment spines (AISS) could be modified by neonatal maternal separation through stress hormones and microglial activation and examined the potential behavioral consequences. We examined AISS densities at postnatal day (PND) 15 and 50, using Golgi-Cox staining and anatomical analysis. Neuron-microglial interaction was assessed using antibodies against ankyrinG, PSD95 and Iba1, for AIS, AISS and microglia, respectively, in normally reared and neonatal maternally separated (MS) male and female rats. We observed a higher density of AISS in MS groups at both PND15 and PND50 compared to control. Effects were more pronounced in female than in male rats. AIS-associated microglia showed a hyper-ramified morphology and less co-localization with PSD95 in MS compared to normally reared animals at PND 15. An MS-like alteration in microglial morphology and synaptic pruning could be produced ex vivo by vasopressin application in acute hippocampal slices from normally reared animals. MS rats exhibited increased freezing behavior during auditory fear memory testing which, like effects on AISS density, was more pronounced in females than males. Freezing behavior was associated with Fos expression in dorsal and ventral dentate GC. In summary, AIS associated microglial activity is altered by MS. Sex differences in the long-term effects of MS on AISS density are penetrant to a behavioral phenotype of increased stimulus reactivity in adult female subjects.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3