Lytic Bacteroides uniformis bacteriophages exhibiting host tropism congruent with diversity generating retroelement

Author:

Hedzet Stina,Accetto Tomaž,Rupnik Maja

Abstract

AbstractIntestinal phages are abundant and important component of gut microbiota, but our knowledge remains limited to only a few isolated and characterized representatives targeting numerically dominant gut bacteria. Here we describe isolation of human intestinal phages infecting Bacteroides uniformis. Bacteroides is one of the most common bacterial groups in the global human gut microbiota, however, to date not many Bacteroides specific phages are known. Phages isolated in this study belong to a novel viral genus, Bacuni, within Siphoviridae family and represent the first lytic phages, genomes of which encode diversity generating retroelements (DGR). This region is assumed to promote phage adaptation to the rapidly changing environmental conditions and to broaden its host range. Three isolated phages showed 99,83% genome identity but infected distinct B. uniformis strains. The tropism of Bacuni phages appeared to be dependent on the interplay of DGR mediated sequence variations of phage fimbrial tip proteins and mutations in host genes coding for outer-membrane proteins. We found prophages with up to 85% aa similarity to Bacuni phages in the genomes of B. acidifaciens and Prevotella sp.. Despite the abundance of Bacteroides within human microbiome, we found Bacuni phages only in a limited subset of published gut metagenomes.ImportanceThe lack of common marker gene in viruses require a precise characterization of diverse isolated phages to enhance metagenomic analyses and to understand their role in gut microbiota. Here we report the isolation of phages representing a new genus with characteristics so far not known or rarely described in intestinal phages. They are the first lytic phages specific for Bacteroides uniformis, a bacterial representative of the prevalent genus in the gut of humans and animals. Additionally, they are the first lytic phages containing specific regions (diversity generating retroelement) that putatively influence host tropism. The ability to switch constantly the targeted populations of the host species could provide an evolutionary advantage to these bacteriophages and may affect intra species diversity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3