Attack behaviour in naïve Gyrfalcons is modelled by the same guidance law as in Peregrines, but at a lower guidance gain

Author:

Brighton Caroline H.ORCID,Chapman Katherine E.,Fox Nicholas C.,Taylor Graham K.ORCID

Abstract

ABSTRACTThe aerial hunting behaviours of birds are strongly influenced by their flight morphology and ecology, but little is known of how this variation relates to the behavioural algorithms guiding flight. Here we use onboard GPS loggers to record the attack trajectories of captive-bred Gyrfalcons (Falco rusticolus) during their maiden flights against robotic aerial targets, which we compare to existing flight data from Peregrines (Falco peregrinus) The attack trajectories of both species are modelled most economically by a proportional navigation guidance law, which commands turning in proportion to the angular rate of the line-of-sight to target, at a guidance gain N. However, Gyrfalcons operate at significantly lower values of N than Peregrines, producing slower turning and a longer path to intercept. Gyrfalcons are less agile and less manoeuvrable than Peregrines, but this physical constraint is insufficient to explain their lower guidance gain. On the other hand, lower values of N promote the tail-chasing behaviour that is typical of wild Gyrfalcons, and which apparently serves to tire their prey in a prolonged high-speed pursuit. Moreover, during close pursuit of fast evasive prey such as Ptarmigan (Lagopus spp.), proportional navigation will be less prone to being thrown off by erratic target manoeuvres if N is low. The fact that low-gain proportional navigation successfully models the maiden attack flights of Gyrfalcons suggests that this behavioural algorithm is embedded in a hardwired guidance loop, which we hypothesise is ancestral to the clade containing Gyrfalcons and Peregrines.SUMMARY STATEMENTNaïve Gyrfalcons attacking aerial targets are modelled by the same proportional navigation guidance law as Peregrines, but with a lower navigation constant that promotes tail-chasing rather than efficient interception.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3