THE MATRIX IS EVERYWHERE: CACO3 BIOMINERALIZATION BY THE BACILLUS LICHENIFORMIS PLANKTONIC CELLS

Author:

Ivanova Lyubov A.,Golovkina Darya A.,Zhurishkina Elena V.,Garmay Yuri P.,Baranchikov Alexander Ye.,Tsvigun Natalia V.,Zabrodskaya Yana A.,Yapryntsev Alexey D.,Gorshkov Andrey N.,Lebedev Kirill I.,Shaldzhyan Aram A.,Kopitsa Gennady P.,Egorov Vladimir V.,Kulminskaya Anna A.ORCID

Abstract

ABSTRACTTo date, the mechanisms of CaCO3 nucleus formation and crystal growth induced by bacterial cells still remain debatable. Here, an insight on the role of planktonic cells of Bacillus licheniformis DSMZ 8782 in the biomineralization is presented. We showed that during 14-days bacterial growth in a liquid urea/Ca2+-containing medium the transformation of CaCO3 polymorphs followed the classical pathway “ACC-vaterite-calcite/aragonite”. By microscopic techniques, we detected the formation of extracellular matrix (ECM) around the cells at the stage of exponential growth and appearance of electron-dense inclusions at 24 h after the inoculation. The cells formed filaments and created a network, the nodes of which served as sites for further crystal growth. The ECM formation accompanied with the expression of proteins required for biofilm formation, the aldehyde/alcohol dehydrogenase, stress-associated Clp family proteins, and a porin family protein (ompA ortholog) associated with bacterial extracellular vesicles. We demonstrated that urea and CaCl2 acted as denaturing agents causing matrix formation in addition to their traditional role as a source of carbonate and Ca2+ ions. We showed that CaCO3 nucleation occured inside B. licheniformis cells and further crystal growth and polymorphic transformations took place in the extracellular matrix without attaching to the cell surface. The spatial arrangement of the cells was important for the active crystal growth and dependent on environmental factors. The extracellular matrix played a double role being formed as a stress response and providing a favorable microenvironment for biomineralization (a high concentration of ions necessary for CaCO3 crystal aggregation, fixation and stabilization).

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3