Genomic surveillance and improved molecular typing of Bordetella pertussis using wgMLST

Author:

Weigand Michael R.ORCID,Peng Yanhui,Pouseele Hannes,Kania Dane,Bowden Katherine E.ORCID,Williams Margaret M.ORCID,Tondella M. Lucia

Abstract

ABSTRACTMulti-Locus Sequence Typing (MLST) provides allele-based characterization of bacterial pathogens in a standardized framework. However, current MLST schemes for Bordetella pertussis, the causative agent of whooping cough, seldom reveal diversity among the small number of gene targets and thereby fail to delineate population structure. To improve discriminatory power of allele-based molecular typing of B. pertussis, we have developed a whole-genome MLST (wgMLST) scheme from 214 reference-quality genome assemblies. Iterative refinement and allele curation resulted in a scheme of 3,506 coding sequences and covering 81.4% of the B. pertussis genome. This wgMLST scheme was further evaluated with data from a convenience sample of 2,389 B. pertussis isolates sequenced on Illumina instruments, including isolates from known outbreaks and epidemics previously characterized by existing molecular assays, as well as replicates collected from individual patients. wgMLST demonstrated concordance with whole-genome single nucleotide polymorphisms (SNP) profiles, accurately resolved outbreak and sporadic cases in a retrospective comparison, and clustered replicate isolates collected from individual patients during diagnostic confirmation. Additionally, a re-analysis of isolates from two statewide epidemics using wgMLST reconstructed the population structures of circulating strains with increased resolution, revealing new clusters of related cases. Comparison with an existing core-genome (cgMLST) scheme highlights the genomic stability of this bacterium and forms the initial foundation for necessary standardization. These results demonstrate the utility of wgMLST for improving B. pertussis characterization and genomic surveillance during the current pertussis disease resurgence.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Changing Pertussis Epidemiology: Everything Old is New Again

2. Acellular pertussis vaccines and pertussis resurgence: revise or replace;MBio,2014

3. Bart MJ , Zeddeman A , van der Heide HG , Heuvelman K , van Gent M , Mooi FR . 2014. Complete Genome Sequences of Bordetella pertussis Isolates B1917 and B1920, Representing Two Predominant Global Lineages. Genome Announc 2.

4. A simulation study on the relative role of age groups under differing pertussis transmission scenarios

5. Burdin N , Handy LK , Plotkin SA . 2017. What Is Wrong with Pertussis Vaccine Immunity?: The Problem of Waning Effectiveness of Pertussis Vaccines. 9.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3