High precision in microRNA prediction: a novel genome-wide approach based on convolutional deep residual networks

Author:

Yones C.ORCID,Raad J.ORCID,Bugnon L.A.ORCID,Milone D.H.ORCID,Stegmayer G.ORCID

Abstract

AbstractMotivationMicroRNAs (miRNAs) are small non-coding RNAs that have a key role in the regulation of gene expression. The importance of miRNAs is widely acknowledged by the community nowadays, and the precise prediction of novel candidates with computational methods is still very needed. This could be done by searching homologous with sequence alignment tools, but this will be restricted only to sequences very similar to the known miRNA precursors (pre-miRNAs). Further-more, other important properties of pre-miRNAs, such as the secondary structure, are not taken into account by these methods. Many machine learning approaches were proposed in the last years to fill this gap, but these methods were tested in very controlled conditions, which are not fulfilled, for example, when predicting in newly sequenced genomes, where no miRNAs are known. If these methods are used under real conditions, the precision achieved is far from the one published.ResultsThis work provides a novel approach for dealing with the computational prediction of pre-miRNAs: a convolutional deep residual neural network. The proposed model has been tested on several complete genomes of animals and plants, achieving a precision up to 5 times higher than other approaches at the same recall rates. Also, a novel validation methodology is used to ensure that the performance reported can be achieved when using the method on new unknown species.AvailabilityTo provide fast an easy access to mirDNN, a web demo is available here. It can process fasta files with multiple sequences to calculate the prediction scores, and can generate the nucleotide importance plots. The full source code of this project is available here and here.Contactcyones@sinc.unl.edu.ar

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3