Purification, characterization and influence on membrane properties of the plant-specific sphingolipids GIPC

Author:

Cassim Adiilah Mamode,Navon Yotam,Gao Yu,Decossas Marion,Fouillen Laetitia,Grélard Axelle,Nagano Minoru,Lambert Olivier,Bahammou Delphine,Van Delft Pierre,Maneta-Peyret Lilly,Simon-Plas Françoise,Heux Laurent,Fragneto Giovanna,Mortimer Jenny C.ORCID,Deleu Magali,Lins Laurence,Mongrand Sébastien

Abstract

AbstractThe plant plasma membrane (PM) is an essential barrier between the cell and the external environment. The PM is crucial for signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols and phospholipids. The most abundant sphingolipids in the plant PM are the Glycosyl Inositol Phosphoryl Ceramides (GIPCs), representing up to 40% of total sphingolipids, assumed to be almost exclusively in the outer leaflet of the PM. In this study, we investigated the structure of GIPCs and their role in membrane organization. Since GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of different long chain bases and fatty acids. The glycan head groups of the different GIPC series from monocots and dicots were analysed by GC-MS showing different sugar moieties. Multiple biophysics tools namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state2H-NMR and molecular modelling were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the phytosterols species and regulate the gel-to-fluid phase transition during temperature variations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3