Author:
Shen Zhongfu,Lin Yang,Yang Jiajun,Jörg David J.,Peng Yuwei,Zhang Xiuli,Xu Yifan,Hernandez Luisirene,Ma Jian,Simons Benjamin D.,Shi Song-Hai
Abstract
SUMMARYRadial glial progenitors (RGPs) are responsible for producing the vast majority of neurons and glia in the neocortex. While RGP behavior and progressive generation of neocortical neurons have been delineated, the exact process of neocortical gliogenesis remains elusive. Here, we report the precise progenitor cell behavior and gliogenesis program at single-cell resolution in the mouse neocortex. RGPs transition from neurogenesis to gliogenesis progressively, producing astrocytes, oligodendrocytes, or both in well-defined propensities of 60%:15%:25%, respectively, via fate-restricted “intermediate” precursor cells. While the total number of precursor cells generated by individual RGPs appears stochastic, the output of individual precursor cells exhibit clear patterns in number and subtype, and form discrete local subclusters. Clonal loss of tumor suppressor Neurofibromatosis type 1 leads to excessive production of glia selectively, especially oligodendrocyte precursor cells. These results delineate the cellular program of neocortical gliogenesis quantitatively and suggest the cellular and lineage origin of primary brain tumor.
Publisher
Cold Spring Harbor Laboratory