Identification of qPCR reference genes suitable for normalising gene expression in the developing mouse embryo

Author:

Hildyard John C.W.ORCID,Wells Dominic J.ORCID,Piercy Richard J.

Abstract

AbstractMammalian embryogenesis is an intricate, tightly orchestrated process. Progression from zygote through somitogenesis and on to organogenesis and maturity involves many interacting cell types and multiple differentiating cell lineages. Quantitative PCR analysis of gene expression in the developing embryo is a valuable tool for deciphering these interactions and tracing lineages, but normalisation of qPCR data to stably expressed reference genes is essential. Patterns of gene expression change globally and dramatically as embryonic development proceeds, rendering identification of appropriate reference genes challenging at both the whole embryo- and individual tissue-level. We have investigated expression stability in mouse embryos from mid to late gestation (E11.5–E18.5), both at the whole-embryo level, and within more restricted tissue domains (head, developing forelimb), using 15 candidate reference genes (ACTB, 18S, SDHA, GAPDH, HTATSF1, CDC40, RPL13A, CSNK2A2, AP3D1, HPRT1, CYC1, EIF4A, UBC, B2M and PAK1IP1), and four complementary algorithms (geNorm, Normfinder, Bestkeeper and deltaCt). Unexpectedly, all methods suggest that many genes within our candidate panel are acceptable references, and despite disagreement over highest-scoring candidates, AP3D1, RPL14A and PAK1IP1 are the strongest performing genes overall. Conversely, HPRT1 and B2M are consistently poor choices: these genes show strong developmental regulation. We further show that use of AP3D1, RPL13A and PAK1IP1 can reveal subtle patterns of developmental expression even in genes ostensibly ranked as acceptable (CDC40, HTATSF1), and thus these three represent universally suitable reference genes for the mouse embryo.

Publisher

Cold Spring Harbor Laboratory

Reference60 articles.

1. Kaufman MH . The Atlas of Mouse Development. 1st ed: Academic Press; 1992.

2. Hill M . Embryology. Available from: https://embryology.med.unsw.edu.au/embryology/index.php/Main_Page.

3. Macdonald DW . The Encyclopedia of Mammals. 3rd ed: Oxford University Press; 2007.

4. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse

5. Mouse gastrulation: the formation of a mammalian body plan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3