Ongoing Global and Regional Adaptive Evolution of SARS-CoV-2

Author:

Rochman Nash D.,Wolf Yuri I.,Faure Guilhem,Mutz Pascal,Zhang Feng,Koonin Eugene V.ORCID

Abstract

AbstractUnderstanding the trends in SARS-CoV-2 evolution is paramount to control the COVID- 19 pandemic. We analyzed more than 300,000 high quality genome sequences of SARS-CoV-2 variants available as of January 2021. The results show that the ongoing evolution of SARS-CoV-2 during the pandemic is characterized primarily by purifying selection, but a small set of sites appear to evolve under positive selection. The receptor-binding domain of the spike protein and the nuclear localization signal (NLS) associated region of the nucleocapsid protein are enriched with positively selected amino acid replacements. These replacements form a strongly connected network of apparent epistatic interactions and are signatures of major partitions in the SARS-CoV-2 phylogeny. Virus diversity within each geographic region has been steadily growing for the entirety of the pandemic, but analysis of the phylogenetic distances between pairs of regions reveals four distinct periods based on global partitioning of the tree and the emergence of key mutations. The initial period of rapid diversification into region- specific phylogenies that ended in February 2020 was followed by a major extinction event and global homogenization concomitant with the spread of D614G in the spike protein, ending in March 2020. The NLS associated variants across multiple partitions rose to global prominence in March-July, during a period of stasis in terms of inter- regional diversity. Finally, beginning July 2020, multiple mutations, some of which have since been demonstrated to enable antibody evasion, began to emerge associated with ongoing regional diversification, which might be indicative of speciation.SignificanceUnderstanding the ongoing evolution of SARS-CoV-2 is essential to control and ultimately end the pandemic. We analyzed more than 300,000 SARS-CoV-2 genomes available as of January 2021 and demonstrate adaptive evolution of the virus that affects, primarily, multiple sites in the spike and nucleocapsid protein. Selection appears to act on combinations of mutations in these and other SARS-CoV-2 genes. Evolution of the virus is accompanied by ongoing adaptive diversification within and between geographic regions. This diversification could substantially prolong the pandemic and the vaccination campaign, in which variant-specific vaccines are likely to be required.

Publisher

Cold Spring Harbor Laboratory

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding the Omicron Variant in the COVID-19 Pandemic;New COVID-19 Variants [Working Title];2023-10-03

2. Mutational Analysis of Circulating Omicron SARS-CoV-2 Lineages in the Al-Baha Region of Saudi Arabia;Journal of Multidisciplinary Healthcare;2023-07

3. Structural and functional insights into the spike protein mutations of emerging SARS-CoV-2 variants;Cellular and Molecular Life Sciences;2021-11-03

4. Evolution of human respiratory virus epidemics;F1000Research;2021-07-29

5. Ongoing global and regional adaptive evolution of SARS-CoV-2;Proceedings of the National Academy of Sciences;2021-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3