Clustering-based positive feedback between a kinase and its substrate enables effective T-cell receptor signaling

Author:

Dine ElliotORCID,Reed Ellen H.ORCID,Toettcher Jared E.ORCID

Abstract

AbstractProtein clusters and condensates are pervasive in mammalian signaling. Yet how the signaling capacity of higher-order assemblies differs from simpler forms of molecular organization is still poorly understood. Here, we present an optogenetic approach to switch between light-induced clusters and simple protein heterodimers with a single point mutation. We apply this system to study how clustering affects signaling from the kinase Zap70 and its substrate LAT, proteins that normally form membrane-localized clusters during T cell activation. We find that light-induced clusters of LAT and Zap70 trigger potent activation of downstream signaling pathways even in non-T cells, whereas one-to-one dimers do not. We provide evidence that clusters harbor a local positive feedback loop between three components: Zap70, LAT, and Src-family kinases that bind to phosphorylated LAT and further activate Zap70. Overall, our study provides evidence for a specific role of protein condensates in cell signaling, and identifies a simple biochemical circuit that can robustly sense protein oligomerization state.Highlights-A general system for studying the role of protein clusters versus dimers.-Membrane clusters of the kinase Zap70 and its substrate LAT trigger potent downstream signaling.-Clustering Zap70 with LAT is required for full activation of Zap70 kinase activity.-A positive feedback loop connects phosphorylated LAT to Zap70 activation via Src-family kinases.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. Nandagopal, N. et al. Dynamic Ligand Discrimination in the Notch Pathway. Cell, 1–12.

2. Higher-Order Clustering of the Transmembrane Anchor of DR5 Drives Signaling;Cell,2019

3. Regulation of Transmembrane Signaling by Phase Separation;Annual Review of Biophysics,2019

4. Phase transitions of multivalent proteins can promote clustering of membrane receptors

5. Phosphorylated EGFR Dimers Are Not Sufficient to Activate Ras Phosphorylated EGFR Dimers Are Not Sufficient to Activate Ras;CellReports,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3