Heavily burned wood from wildfires is less likely to provide functionality in streams

Author:

Vaz Pedro Gonçalves,Merten Eric C.,Robinson Christopher T.,Pinto Paulo

Abstract

AbstractIncreasingly severe forest fires are recruiting more heavily burned wood into streams. Wood affects every ecological and physical process in streams differently throughout seasons. However, little is known about the seasonality of wood functions in fire-prone biomes and how it combines with wood burning level to guide future postfire restoration efforts.Through an extensive three-year seasonal tracking of stream wood following forest fires in central Portugal, we examined for the first time the influence of burning level, season, and a large suite of driving factors on the likelihood of each of four functions with primary ecological consequences — retention of organic matter, serving as substrate for aquatic biota, being key pieces forming wood jams, and deflecting flow including pool habitat formation.Our results strongly support that one of the main ecological functions of wood in rivers, i.e. to provide substrate for biological organisms — namely for vegetation, periphyton, biofilms, and ovipositions — can be negatively affected in heavily burned wood.Except for jam formation, the probability of each stream wood function changed markedly with season and the probability of non-function was nearly twice as high in the Euro-Mediterranean dry as in the wet season.More anchored and decayed wood increased the probability of all functions, whereas the effect of submergence depended on the function. Challenging the “size paradigm” assuming larger-sized pieces to provide more function, our data suggest the effect of size to be function-specific.Synthesis and applications. We show how postfire restoration success can be maximized by selecting the most appropriate wood, taking advantage of attribute-function relationships and choosing the right timing for operations. We urge managers to refrain from removing wood or to selectively remove the most heavily carbonized only, allowing the persistence of great potential to provide substrate for stream biota. The non-attraction of heavily burned wood as substrate can be compensated for by other wood with attributes enhancing this function, such as wood deeper within the bankfull area, and with large diameters. These results help to inform successful management, as is increasingly asked from restoration ecology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3