RNA polymerase clamp conformational dynamics: long-lived states and modulation by crowding, cations, and nonspecific DNA binding

Author:

Mazumder Abhishek,Wang Anna,Uhm Heesoo,Ebright Richard H.,Kapanidis Achillefs N.

Abstract

AbstractThe RNA polymerase (RNAP) clamp, a mobile structural element conserved in RNAP from all domains of life, has been proposed to play critical roles at different stages of transcription. In previous work, we demonstrated using single-molecule Förster resonance energy transfer (smFRET) that RNAP clamp interconvert between three short-lived conformational states (lifetimes ∼ 0.3-0.6 s), that the clamp can be locked into any one of these states by small molecules, and that the clamp stays closed during initial transcription and elongation. Here, we extend these studies to obtain a comprehensive understanding of clamp dynamics under conditions RNAP may encounter in living cells. We find that the RNAP clamp can populate long-lived conformational states (lifetimes >1.0 s) and can switch between these long-lived states and the previously observed short-lived states. In addition, we find that clamp motions are increased in the presence of molecular crowding, are unchanged in the presence of elevated monovalent-cation concentrations, and are reduced in the presence of elevated divalent-cation concentrations. Finally, we find that RNAP bound to non-specific DNA predominantly exhibits a closed clamp conformation. Our results raise the possibility of additional regulatory checkpoints that could affect clamp dynamics and consequently could affect transcription and transcriptional regulation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3