Proteomic and transcriptomic analysis ofMicroviridaeφXI74 infection reveals broad up-regulation of host membrane damage and heat shock responses

Author:

Wright Bradley W,Logel Dominic YORCID,Mirzai MehdiORCID,Pascovici DanaORCID,Molloy Mark PORCID,Jaschke Paul RORCID

Abstract

ABSTRACTMeasuring host-bacteriophage dynamics is an important approach to understanding bacterial survival functions and responses to infection. The modelMicroviridaebacteriophage φX174 is endemic to the human gut and has been studied for over seventy years but the host response to infection has never been investigated in detail. To address this gap in our understanding of this important interaction within our microbiome we have measured hostEscherichia coliC proteomic and transcriptomic response to φX174 infection. We used mass spectrometry and RNA-seq to identify and quantify all 11 φX174 proteins and over 1,700E. coliproteins, enabling us to comprehensively map host pathways involved in φX174 infection. Most notably, we see significant host responses centered on membrane damage and remodeling, cellular chaperone and translocon activity, and lipoprotein processing, which we speculate is due to the peptidoglycan-disruptive effects of the φX174 lysis protein E on MraY activity. We also observe the massive upregulation of small heat-shock proteins IbpA/B, along with other heat shock pathway chaperones, and speculate on how the specific characteristics of holdase protein activity may be beneficial for viral infections. Together, this study enables us to begin to understand the proteomic and transcriptomic host responses ofE. colitoMicroviridaeinfections and contributes insights to the activities of this important model phage.IMPORTANCEA major part of the healthy human gut microbiome are theMicroviridaebacteriophage, exemplified by the model φX174 phage. Although much has been learned from studying φX174 over the last half century, until this work, theE. colihost response to infection has never been investigated in detail. We reveal the proteomic and transcriptomic pathways differentially regulated during the φX174 infection cycle, and uncover the details of a coordinated cellular response to membrane damage that results in increased lipoprotein processing and membrane trafficking, likely due to the phage antibiotic-like lysis protein. We also reveal that small heat shock proteins IbpA/B are massively upregulated during infection and that these holdase chaperones are highly conserved across the domains of life, indicating that reliance on them is likely widespread across viruses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3