Gamma-irradiated SARS-CoV-2 vaccine candidate, OZG-38.61.3, confers protection from SARS-CoV-2 challenge in human ACEII-transgenic mice

Author:

Turan Raife DilekORCID,Tastan CihanORCID,Kancagi Derya DilekORCID,Yurtsever BulutORCID,Karakus Gozde SirORCID,Ozer SamedORCID,Abanuz SelenORCID,Cakirsoy DidemORCID,Tumentemur GamzeORCID,Demir SevdaORCID,Seyis UtkuORCID,Kuzay RecaiORCID,Elek MuhammerORCID,Kocaoglu Miyase EzgiORCID,Ertop GurcanORCID,Arbak SerapORCID,Elmas Merve AcikelORCID,Hemsinlioglu CansuORCID,Ng Ozden HatirnazORCID,Akyoney SezerORCID,Sahin IlaydaORCID,Kayhan Cavit KeremORCID,Tokat FatmaORCID,Akpinar GurlerORCID,Kasap MuratORCID,Kocagoz Ayse SesinORCID,Ozbek UgurORCID,Telci DilekORCID,Sahin FikrettinORCID,Yalcin KorayORCID,Ratip SiretORCID,Ince UmitORCID,Ovali ErcumentORCID

Abstract

AbstractThe SARS-CoV-2 virus caused the most severe pandemic around the world, and vaccine development for urgent use became a crucial issue. Inactivated virus formulated vaccines such as Hepatitis A, oral polio vaccine, and smallpox proved to be reliable approaches for immunization for prolonged periods. During the pandemic, we produced an inactivated SARS-CoV-2 vaccine candidate, having the advantages of being manufactured rapidly and tested easily in comparison with recombinant vaccines. In this study, an inactivated virus vaccine that includes a gamma irradiation process for the inactivation as an alternative to classical chemical inactivation methods so that there is no extra purification required has been optimized. The vaccine candidate (OZG-38.61.3) was then applied in mice by employing the intradermal route, which decreased the requirement of a higher concentration of inactivated virus for proper immunization, unlike most of the classical inactivated vaccine treatments. Hence, the novelty of our vaccine candidate (OZG-38.61.3) is that it is a non-adjuvant added, gamma-irradiated, and intradermally applied inactive viral vaccine. Efficiency and safety dose (either 1013 or 1014 viral copy per dose) of OZG-38.61.3 was initially determined in Balb/c mice. This was followed by testing the immunogenicity and protective efficacy of OZG-38.61.3. Human ACE2-encoding transgenic mice were immunized and then infected with a dose of infective SARS-CoV-2 virus for the challenge test. Findings of this study show that vaccinated mice have lower SARS-CoV-2 viral copy number in oropharyngeal specimens along with humoral and cellular immune responses against the SARS-CoV-2, including the neutralizing antibodies similar to those shown in Balb/c mice without substantial toxicity. Subsequently, plans are being made for the commencement of Phase 1 clinical trial of the OZG-38.61.3 vaccine for the COVID-19 pandemic.

Publisher

Cold Spring Harbor Laboratory

Reference33 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3