Amyloid ß Impacts Future Freezing of Gait in Parkinson’s Disease Via White Matter Hyperintensities

Author:

Dadar Mahsa,Miyasaki Janis,Duchesne Simon,Camicioli Richard

Abstract

AbstractBackgroundFreezing of gait (FOG) is a common symptom in Parkinson’s Disease (PD) patients. Previous studies have reported relationships between FOG, substantia nigra (SN) degeneration, dopamine transporter (DAT) concentration, as well as amyloid β deposition. However, there is a paucity of research on the concurrent impact of white matter damage.ObjectivesTo assess the inter-relationships between these different co-morbidities, their impact on future FOG and whether they act independently of each other.MethodsWe used baseline MRI and longitudinal gait data from the Parkinson’s Progression Markers Initiative (PPMI). We used deformation based morphometry (DBM) from T1-weighted MRI to measure SN atrophy, and segmentation of white matter hyperintensities (WMH) as a measure of WM pathological load. Putamen and caudate DAT levels from SPECT as well as cerebrospinal fluid (CSF) amyloid β were obtained directly from the PPMI. Following correlation analyses, we investigated whether WMH burden mediates the impact of amyloid β on future FOG.ResultsSN DBM, WMH load, putamen and caudate DAT activity and CSF amyloid β levels were significantly different between PD patients with and without future FOG (p < 0.008). Mediation analysis demonstrated an effect of CSF amyloid β levels on future FOG via WMH load, independent of SN atrophy and striatal DAT activity levels.ConclusionsAmyloid β might impact future FOG in PD patients through an increase in WMH burden, in a pathway independent of Lewy body pathology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3