MicroRNA840 accelerates leaf senescence by targeting the overlapping 3’UTRs of PPR and WHIRLY3 in Arabidopsis thaliana

Author:

Yujun RenORCID,Wanzhen Wang,Wei Lan,Dirk SchenkeORCID,Daguang CaiORCID,Ying MiaoORCID

Abstract

AbstractMicroRNAs (miRNAs) negatively regulate gene expression by cleaving the target mRNA and/or impairing its translation, thereby playing a crucial role in plant development and environmental stress responses. In Arabidopsis, MIR840 is located within the overlapping 3’UTR of PPR and WHIRLY3 (WHY3), both being predicted targets of miR840. Gain- and loss-of-function of miR840 in Arabidopsis resulted in opposite senescent phenotypes. Highest expression of pri-miR840 is observed at senescence initiation, and is negatively correlated with a significant reduction of PPR transcripts but not of WHY3. Although WHY3 transcript levels were not significantly affected by miR840 overexpression, its protein synthesis was strongly reduced. Mutating the cleavage sites or replacing the target sequences abolishes the miR840-mediated degradation of PPR transcripts and inhibition of WHY3 translation. In support for this, concurrent knock-down of both PPR and WHY3 in the WT resulted in the senescent phenotype resembling that of the miR840-overexpressing mutant. This indicates that both PRR and WHY3 are targets in the miR840-regulated senescent pathway. Moreover, single knockout mutant of PPR or WHY3 shows a convergent up-regulated subset of senescence-associated genes, which are also found among those induced by miR840 overexpression. Our data provide evidences for a regulatory role of miR840 in plant senescence.HighlightMicroRNA840 (miR840) has a unique miRNA-target configuration regulating PPR and WHIRLY3 genes in Arabidopsis. MiR840 is highly expressed at the onset of plant senescent stage. Both PPR and WHIRLY3 transcripts are specifically targeted in vivo within their 3’UTR region by mature miR840 or its star strand in vivo. Interestingly, PPR expression is mainly repressed on mRNA transcript level by cleavage, while WHIRLY3 is predominantly translationally inhibited. We conclude that miR840 enhances plant senescence via post transcriptional gene silencing of PPR and WHIRLY3, which appear to be novel negative joint regulators of plant senescence.Footnote: The author(s) responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the intructions for Authors is: Ying Miao (ymiao@fafu.edu.cn)

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3