Asymmetry in Histone Rotation in Forced Unwrapping and Force Quench Rewrapping in a Nucleosome

Author:

Reddy Govardhan,Thirumalai D.

Abstract

AbstractNucleosomes, the building blocks of chromosomes, are also transcription regulators. Single molecule pulling experiments have shown that nucleosomes unwrap in two major stages, releasing nearly equal length of DNA in each stage. The first stage, attributed to the rupture of the outer turn is reversible, occurs at low forces (≈ (3 - 5) pNs) whereas in the second stage the inner turn ruptures irreversibly at high forces (between ≈ (9 - 15) or higher) pNs. We show that Brownian dynamics simulations using the Self-Organized Polymer model of the nucleosome capture the experimental findings, thus permitting us to discern the molecular details of the structural changes not only in DNA but also in the Histone Protein Core (HPC). Upon unwrapping of the outer turn, which is independent of the pulling direction, there is a transition from 1.6 turns to 1.0 turn DNA wound around the HPC. In contrast, the rupture of the inner turn, leading to less than 0.5 turn DNA around the HPC, depends on the pulling direction, and is controlled by energetic and kinetic barriers. The latter arises because the mechanical force has to produce sufficient torque to rotate (in an almost directed manner) the HPC by 180°. In contrast, during the rewrapping process, HPC rotation is stochastic, with the quenched force fQ playing no role. Interestingly, if fQ = 0 the HPC rotation is not required for rewrapping because the DNA ends are unconstrained. The assembly of the outer wrap upon force quench, as assessed by the decrease in the end-to-end distance (Ree) of the DNA, nearly coincides with the increase in Ree as force is increased, confirming the reversible nature of the 1.6 turns to 1.0 turn transition. The asymmetry in HPC rotation during unwrapping and rewrapping accounts for the observed hysteresis in the stretch-release cycles in single molecule pulling experiments. Experiments that could validate the prediction that HPC rotation, which gives rise to the kinetic barrier in the unwrapping process, are proposed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3