High catalytic rate of the cold-activeVibrioalkaline phosphatase depends on a hydrogen bonding network involving a large interface loop

Author:

Hjörleifsson Jens GuðmundurORCID,Helland Ronny,Magnúsdóttir Manuela,Ásgeirsson Bjarni

Abstract

AbstractThe role of surface loops in mediating communication through residue networks is still a relatively poorly understood part of cold-adaptation of enzymes, especially in terms of their quaternary interactions. Alkaline phosphatase (AP) from the psychrophilic marine bacteriumVibrio splendidus(VAP) is characterized by an analogous large surface loop in each monomer, referred to as the large-loop, that hovers over the active site of the other monomer. It presumably has a role in VAP high catalytic efficiency that accompanies extremely low thermal stability. We designed several different mutagenic variants of VAP with the aim of removing inter-subunit interactions at the dimer interface. Breaking the inter-subunit contacts from one residue in particular (Arg336) caused diminished temperature stability of the catalytically potent conformation and a drop in catalytic rate by a half. The relative B-factors of the R336L crystal structure, compared to the wild-type, confirmed increased surface flexibility in a loop on the opposite monomer, but not in the large-loop. Contrary to expectations, the observed reduction in stability with an expected increase in dynamic mobility resulted in reduced catalytic rate. This contradicts common theories explaining high catalytic rates of enzyme from cold-adapted organisms as being due to reduced internal cohesion bringing increased dynamic flexibility to catalytic groups. The large-loop increases the area of the interface between the subunits through its contacts and may facilitate an alternating structural cycle demanded by a half-of-sites reaction mechanism through stronger ties, as the dimer oscillates between high affinity (active) or low phosphoryl-group affinity (inactive).

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. Computation of enzyme cold adaptation;Nature Reviews Chemistry.,2017

2. Hochachka, P. W. & Somero, G. N. (2002) Biochemical adaptation : mechanism and process in physiological evolution, Oxford University Press, New York.

3. Protein stability and molecular adaptation to extreme conditons

4. Psychrophilic enzymes: from folding to function and biotechnology;Scientifica (Cairo).,2013

5. Low-temperature extremophiles and their applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3