Stability of the Retinoid X Receptor-alpha Homodimer in the Presence and Absence of Rexinoid and Coactivator Peptide

Author:

Yang Zhengrong,Muccio Donald D.,Melo Nathalia,Atigadda Venkatram R.,Renfrow Matthew B.

Abstract

ABSTRACTDifferential scanning calorimetry and differential scanning fluorimetry were used to measure the thermal stability of human retinoid X receptor-alpha ligand binding domain (RXRα LBD) homodimer in the absence or presence of rexinoid and coactivator peptide, GRIP-1. Theapo-RXRα LBD homodimer displayed a single thermal unfolding transition with aTmof 58.7 °C and an unfolding enthalpy (ΔH) of 673 kJ/mol (12.5 J/g), much lower than average value (35 J/g) of small globular proteins. Using a heat capacity change (ΔCp) of 15 kJ/(mol·K) determined by measurements at different pH values, the free energy of unfolding (ΔG) of the native state was 33 kJ/mol at 37 °C. Rexinoid binding to theapo-homodimer increasedTmby 5 to 9 °C, and increased the ΔGof the native homodimer by 12 to 20 kJ/mol at 37 °C, consistent with the nanomolar dissociation constant (Kd) of the rexinoids. The increase in ΔGwas the result of a more favorable entropic change due to interactions between the rexinoid and hydrophobic residues in the binding pocket, with the larger increases caused by rexinoids containing larger hydrophobic end groups. GRIP-1 binding toholo-homodimers containing rexinoid resulted in additional increases in ΔGof 14 kJ/mol, a value same for all three rexinoids. Binding of rexinoid and GRIP-1 resulted in a combined 50% increase in unfolding enthalpy, consistent with reduced structural fluidity and more compact folding observed in other published structural studies. Thermodynamic analysis thus provided a quantitative evaluation of the interactions between RXR and its agonist and coactivator.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3