Polygamous breeding system identified in the distylous genus Psychotria: P. manillensis in the Ryukyu archipelago, Japan

Author:

Watanabe KentaORCID,Shimizu Akira,Sugawara Takashi

Abstract

AbstractDistyly is a genetic polymorphism composed of long- and short-styled flowers in a population. The evolutionary breakdown of distyly has been reported in many taxa, and mainly involves a shift toward monomorphism or dioecism. However, a shift toward monoecism has not been reported in distylous species. Psychotria (Rubiaceae), one of the world largest genera, consists of distylous species and their derivatives. In our preliminary study, however, we identified some monoecious individuals in a population of Psychotria manillensis. To understand the breeding system and reproductive biology of P. manillensis, we investigated floral traits, open fruit set, and flower visitors, and performed hand pollination and bagging experiments in five populations of Okinawa and Iriomote islands, Ryukyu Islands, Japan. The populations of P. manillensis were composed mainly of monoecious individuals (54%), followed by female (30%), male (14%), and hermaphroditic (2%) individuals at the time of flower collection. Of the collected flowers, 93% were functionally unisexual (male or female), whereas only 6.5% were perfect (hermaphroditic). However, some individuals changed sex mainly towards increasing femaleness during the flowering period. Moreover, 35% of the studied plants changed their sexual expression over the years. P. manillensis showed self-compatibility and no agamospermy. The fruit set under open pollination varied among populations and years (1.8–21.9%), but it was significantly higher than that of auto-selfing (0.68–1.56%). Wasps and flies were the main flower visitors and probably the main pollinators of the species. In conclusion, P. manillensis was revealed to be polygamous, involving monoecious, female, male, and hermaphroditic individuals. This is the first report of the polygamous breeding system not only in the genus Psychotria, but also in all heterostylous taxa.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3