Sequential Measurements of Catalytic Activities of Multi-Drug-Resistance Transporters and Cytochrome P450 Enzymes by Cytometry of Reaction Rate Constant

Author:

Koshkin VasilijORCID,Oliveira Mariana Bleker deORCID,Kochmann SvenORCID,Peng ChunORCID,Krylov Sergey N.ORCID

Abstract

ABSTRACTCytometry of reaction rate constant (CRRC) is an accurate and robust approach to characterize cell-population heterogeneity using rate constants of cellular processes for which kinetic mechanisms are known. We work on a CRRC-based method to develop predictors of tumor chemoresistance driven by two processes: drug extrusion by multi-drug-resistance (MDR) transporters and drug inactivation by cytochrome-P450 enzymes (CYP). Each of the two possess is studied with its specific substrate and the process activity is characterized by a corresponding unimolecular rate constant. Due to the incompatibility of MDR and CYP assays, MDR and CYP activities may be difficult to measure simultaneously suggesting that they may need to be measured sequentially. The sequential measurements may also impose a problem: the results of the second assay may be affected by artifacts exerted by the first assay. The goal of this work was to understand whether the cells have a memory of the first assay that significantly affects the results of the second assay. To achieve this goal, we compared CRRC results for two orders of sequential measurements: the MDR→CYP order in which MDR activity is measured before CYP activity and the CYP→MDR order in which CYP activity is measured before MDR activity. It was found that the results of the CYP assay were similar in both orders; on the contrary, the results of the MDR assay were significantly different. Our findings suggest that MDR and CYP activity can be studied sequentially provided that MDR activity is measured first and CYP activity second.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3