Author:
Lall Snehalika,Ghosh Abhik,Ray Sumanta,Bandyopadhyay Sanghamitra
Abstract
ABSTRACTMany single-cell typing methods require pure clustering of cells, which is susceptible towards the technical noise, and heavily dependent on high quality informative genes selected in the preliminary steps of downstream analysis. Techniques for gene selection in single-cell RNA sequencing (scRNA-seq) data are seemingly simple which casts problems with respect to the resolution of (sub-)types detection, marker selection and ultimately impacts towards cell annotation. We introduce sc-REnF, a novel and robust entropy based feature (gene) selection method, which leverages the landmark advantage of ‘Renyi’ and ‘Tsallis’ entropy achieved in their original application, in single cell clustering. Thereby, gene selection is robust and less sensitive towards the technical noise present in the data, producing a pure clustering of cells, beyond classifying independent and unknown sample with utmost accuracy. The corresponding software is available at: https://github.com/Snehalikalall/sc-REnF
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献