Catestatin induces glycogenesis by stimulating phosphoinositide 3-kinase-AKT pathway

Author:

Bandyopadhyay Gautam,Tang Kechun,Webster Nicholas J.G.,van den Bogaart Geert,Mahata Sushil K.

Abstract

AbstractAimDefects in hepatic glycogen synthesis contribute to postprandial hyperglycemia in type 2 diabetic (T2D) patients. Chromogranin A (CgA) peptide Catestatin (CST: hCgA352-372) has been shown to improve glucose tolerance in insulin-resistant mice. Here, we seek to determine whether CST also reduces hyperglycemia by increasing hepatic glycogen synthesis.MethodsWe determined liver glycogen, glucose-6-phosphate (G6P), uridine diphosphate glucose (UDPG), and glycogen synthase (GYS2) activities; plasma insulin, glucagon, norepinephrine (NE), and epinephrine (EPI) levels in fed and fasted liver of lean and obese mice as well as in CST knockout (CST-KO) mice after treatments with saline, CST, or insulin. We also determined glycogen synthesis and glycogenolysis in primary hepatocytes. In addition, we analyzed phosphorylation signals of Insulin receptor (IR), insulin receptor substrate-1 (IRS-1), phosphatidylinositol dependent kinase-1 (PDK-1), GYS2, glycogen synthase kinase-3β (GSK-3β), AKT (an enzyme in AKR mouse that produces Thymoma)/PKB (protein kinase B) and mTOR (mammalian/mechanistic target of rapamycin) by immunoblotting.ResultsCST stimulated glycogen accumulation in fed and fasted liver and in primary hepatocytes. CST reduced plasma NE and EPI levels, suggesting that CST promotes glycogenesis by inhibiting catecholamine-induced glycogenolysis. CST also directly stimulated glycogenesis and inhibited NE and EPI-induced glycogenolysis in hepatocytes. CST elevated the levels of UDPG and increased GYS2 activity, thus redirecting G6P to the glycogenic pathway. CST-KO mice had decreased liver glycogen that was restored by treatment with CST, reinforcing the crucial role of CST in hepatic glycogenesis. CST can improve insulin signals downstream of insulin receptor IR and IRS-1 by enhancing phospho-AKT signals through stimulation of PDK-1 and mTORC2 (mTOR complex 2) activities.ConclusionsWe conclude that CST directly promotes the glycogenic pathway and reduces plasma glucose levels in insulin-resistant mice by (i) reducing glucose production, (ii) increasing glycogen synthesis from UDPG, and (iii) reducing glycogenolysis. This is achieved by enhancing downstream insulin signaling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3