Self-similar synchronization of calcium and membrane potential transitions during AP cycles predict HR across species

Author:

Sirenko Syevda Tagirova,Tsutsui Kenta,Tarasov Kirill,Yang Dongmei,Wirth Ashley N,Maltsev Victor A.ORCID,Ziman Bruce D.,Yaniv Yael,Lakatta Edward G.

Abstract

AbstractBackgroundTranslation of knowledge of sinoatrial nodal “SAN” automaticity gleaned from animal studies to human dysrhythmias, e.g. “Sick Sinus” Syndrome (SSS) requiring electronic pacemaker insertion has been sub-optimal, largely because heart rate (HR) varies widely across species.ObjectivesTo discover regulatory universal mechanisms of normal automaticity in SAN pacemaker cells that are self-similar across species.MethodSub-cellular Ca2+ releases, whole cell AP-induced Ca2+ transients and APs were recorded in isolated mouse, guinea-pig, rabbit and human SAN cells. Parametric Ca2+ and Vm Kinetic Transitions (PCVKT) during phases of AP cycles from their ignition to recovery were quantified.ResultsAlthough both action potential cycle lengths (APCL) and PCVKT during AP cycles differed across species by ten-fold, trans-species scaling of PCVKT during AP cycles and scaling, of PCVKT to APCL in cells in vitro, EKG RR intervals in vivo, and BM were self-similar (obeyed power laws) across species. Thus, APCL in vitro, HR in vivo, and BM of any species can be predicted by PCVKT during AP cycles in SAN cells measured in any single species in vitro.ConclusionsIn designing optimal HR to match widely different BM and energy requirements from mice to humans, nature did not “reinvent pacemaker cell wheels”, but differentially scaled kinetics of gears that regulate the rates at which the “wheels spin”. This discovery will facilitate the development of novel pharmalogic therapies and biologic pacemakers featuring a normal, wide-range rate regulation in animal models and the translation of these to humans to target recalcitrant human SSS.Condensed AbstractStudies in animal models are an important facet of cardiac arrhythmia research. Because HR differs by over ten-fold between some animals and humans, translation of knowledge about regulatory mechanisms of SAN normal automaticity gleaned from studies in animal models to target human SSS has been sub-optimal. Our findings demonstrating that trans-species self-similarity of sub-cellular and cellular mechanisms that couple Ca2+ to Vm during AP cycles can predict heart rate in vivo from mice to humans will inform on the design of novel studies in animal models and facilitate translation of this knowledge to target human disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3