Flash properties of Gaussia Luciferase are the result of covalent inhibition after a limited number of cycles

Author:

Dijkema Fenne Marjolein,Nordentoft Matilde Knapkøien,Didriksen Anders Krøll,Corneliussen Anders Sværke,Willemoës Martin,Winther Jakob R.ORCID

Abstract

AbstractLuciferases are widely used as reporters for gene expression and for sensitive detection systems. While luciferases from firefly and Renilla have long been used for analysis of intracellular expression, the luciferase (GLuc) from the marine copepod Gaussia princeps, has gained popularity, primarily because it is secreted and displays a very high light intensity. Firefly luciferase is characterized by kinetic behavior which is consistent with conventional steady-state Michaelis-Menten kinetics (termed “glow” kinetics). GLuc, conversely, displays what has been termed “flash” kinetics which signify a burst in light emission followed by a rapid decay. As the mechanistic background for this behavior is poorly characterized, we decided to decipher the mechanism in more detail. We show that decay in light signal is not due to depletion of substrate, but rather is caused by the irreversible inactivation of the enzyme. Inactivation takes place after between 10 and 200 reaction cycles, depending on substrate concentration. We found that the rate of inactivation is described by the sum of two exponentials with associated rate constants. The dominant of these of these increases linearly with substrate concentration while the minor is substrate-concentration independent. In terms of rate of initial luminescence reaction, this increases with the substrate concentration to the power of 1.53 and shows no signs of saturation up to 10 μM coelenterazine. Finally, we found that the inactivated form of the enzyme has a larger apparent size in both size exclusion chromatography and SDS-PAGE analysis and shows a fluorescence peak at 410 nm when excited at 333 nm. These findings indicate that the “flash” kinetics in Gaussia luciferase are caused by an irreversible covalent binding to a derivative of the substrate during the reaction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3