Common physiological processes control mercury reduction during photosynthesis and fermentation

Author:

Grégoire Daniel S.ORCID,Janssen Sarah E.,Lavoie Noémie C.,Tate Michael T.,Poulain Alexandre J.ORCID

Abstract

ABSTRACTMercury (Hg) is a global pollutant and potent neurotoxin that bioaccumulates in food webs as monomethylmercury (MeHg). The production of MeHg is driven by anaerobic and Hg redox cycling pathways such as Hg reduction, which control the availability of Hg to methylators. Anaerobes play an important role in Hg reduction in methylation hotspots, yet their contributions remain underappreciated due to how challenging these pathways are to study in the absence of dedicated genetic targets and low levels of Hg0 in anoxic environments. In this study we used Hg stable isotope fractionation to explore Hg reduction during anoxygenic photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. We show that cells preferentially reduce lighter Hg isotopes in both metabolisms leading to mass-dependent fractionation, but mass-independent fractionation commonly induced by UV-visible light is absent. We show that isotope fractionation is affected by the interplay between pathways controlling Hg recruitment, accessibility, and availability alongside metabolic redox reactions. The combined contributions of these processes lead to isotopic enrichment during anoxygenic photosynthesis that is in between the values reported for anaerobic respiratory microbial Hg reduction and abiotic photoreduction. Isotope enrichment during fermentation is closer to what has been observed in aerobic bacteria that reduce Hg through dedicated detoxification pathways. These results demonstrate that common controls exist at the atomic level for Hg reduction during photosynthesis and fermentation in H. modesticaldum. Our work suggests that similar controls likely underpin diverse microbe-mediated Hg transformations that affect Hg’s fate in oxic and anoxic habitats.IMPORTANCEAnaerobic and photosynthetic bacteria that reduce mercury affect mercury delivery to microbes in methylation sites that drive bioaccumulation in food webs. Anaerobic mercury reduction pathways remain underappreciated in the current view of the global mercury cycle because they are challenging to study, bearing no dedicated genetic targets to establish physiological mechanisms. In this study we used stable isotopes to show that common physiological processes control mercury reduction during photosynthesis and fermentation in the model anaerobe Heliobacterium modesticaldum Ice1. The sensitivity of isotope analyses highlighted the subtle contribution of mercury uptake towards the isotope signature associated with anaerobic mercury reduction. When considered alongside the isotope signatures associated with microbial pathways for which genetic determinants have been identified, our findings underscore the narrow range of isotope enrichment that is characteristic of microbial mercury transformations. This suggests that there exist common atomic-level controls for biological mercury transformations across a broad range of geochemical conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3