Resonance Raman spectra for the in-situ identification of bacteria strains and their inactivation mechanism

Author:

Dhankhar Dinesh,Nagpal Anushka,Li Runze,Chen Jie,Cesario Thomas C.,Rentzepis Peter M.

Abstract

AbstractThe resonance Raman spectra of bacterial carotenoids have been employed to identify bacterial strains and their intensity changes as a function of ultraviolet(UV) radiation dose have been used to differentiate between live and dead bacteria. The enhanced resonance Raman spectra of color-pigmented bacteria were recorded after excitation with visible light diode lasers. In addition, the resonance enhanced Raman spectra enabled us to detect bacteria in water at much lower concentrations (~108 cells/mL) than normally detected spectroscopically. A handheld spectrometer capable of recording resonance Raman spectra in-situ was designed, constructed and was used to record the spectra. In addition to bacteria, the method presented in this paper may also be used to identify fungi, viruses and plants, in-situ, and detect infections within a very short period of time.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3