Single-nucleus transcriptome analysis reveals cell type-specific molecular signatures across reward circuitry in the human brain

Author:

Tran Matthew N.ORCID,Maynard Kristen R.ORCID,Spangler AbbyORCID,Collado-Torres LeonardoORCID,Sadashivaiah VijayORCID,Tippani MadhaviORCID,Barry Brianna K.ORCID,Hancock Dana B.,Hicks Stephanie C.ORCID,Kleinman Joel E.,Hyde Thomas M.,Martinowich KeriORCID,Jaffe Andrew E.ORCID

Abstract

AbstractSingle cell/nucleus technologies are powerful tools to study cell type-specific expression in the human brain, but most large-scale efforts have focused on characterizing cortical brain regions and their constituent cell types. However, additional brain regions - particularly those embedded in basal ganglia and limbic circuits - play important roles in neuropsychiatric disorders and addiction, suggesting a critical need to better understand their molecular characteristics. We therefore created a single-nucleus RNA-sequencing (snRNA-seq) resource across five human brain regions (hippocampus, HPC; dorsolateral prefrontal cortex, DLPFC; subgenual anterior cingulate cortex, sACC; nucleus accumbens, NAc; and amygdala, AMY), with emphasis on the NAc and AMY, given their involvement in reward signaling and emotional processing. We identified distinct and potentially novel neuronal subpopulations, which we validated by smFISH for various subclasses of NAc interneurons and medium spiny neurons (MSNs). We additionally benchmarked these datasets against published datasets for corresponding regions in rodent models to define cross-species convergence and divergence across analogous cell subclasses. We characterized the transcriptomic architecture of regionally-defined neuronal subpopulations, which revealed strong patterns of similarities in specific neuronal subclasses across the five profiled regions. Finally, we measured genetic associations between risk for psychiatric disease and substance use behaviors with each of the regionally-defined cell types. This analysis further supported NAc and AMY involvement in risk for psychiatric illness by implicating specific neuronal subpopulations, and highlighted potential involvement of an MSN population associated with stress signaling in genetic risk for substance use.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3