Mapping calcium dynamics in a developing tubular structure

Author:

Hoyer Jorgen,Saba Morsal,Dondorp Daniel,Kolar KushalORCID,Esposito Riccardo,Chatzigeorgiou MariosORCID

Abstract

AbstractCalcium is a ubiquitous and versatile second messenger that plays a central role in the development and function of a wide range of cell types, tissues and organs. Despite significant recent progress in the understanding of calcium (Ca2+) signalling in organs such as the developing and adult brain, we have relatively little knowledge of the contribution of Ca2+to the development of tubes, structures widely present in multicellular organisms. Here we image Ca2+dynamics in the developing notochord ofCiona intestinalis. We show that notochord cells exhibit distinct Ca2+dynamics during specific morphogenetic events such as cell intercalation, cell elongation and tubulogenesis. We used an optogenetically controlled Ca2+actuator to show that sequestration of Ca2+results in defective notochord cell intercalation, and pharmacological inhibition to reveal that stretch-activated ion channels (SACs), inositol triphosphate receptor (IP3R) signalling, Store Operated Calcium Entry (SOCE), Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and gap junctions are required for regulating notochord Ca2+activity during tubulogenesis. Cytoskeletal rearrangements drive the cell shape changes that accompany tubulogenesis. In line with this, we show that Ca2+signalling modulates reorganization of the cytoskeletal network across the morphogenetic events leading up to and during tubulogenesis of the notochord. We additionally demonstrate that perturbation of the actin cytoskeleton drastically remodels Ca2+dynamics, suggesting a feedback mechanism between actin dynamics and Ca2+signalling during notochord development. This work provides a framework to quantitatively define how Ca2+signalling regulates tubulogenesis using the notochord as model organ, a defining structure of all chordates.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3