Conservation of dynamic characteristics of transcriptional regulatory elements in periodic biological processes

Author:

Motta Francis C.ORCID,Moseley Robert C.ORCID,Cummins BreeORCID,Deckard AnastasiaORCID,Haase Steven B.ORCID

Abstract

AbstractCell and circadian cycles control a large fraction of cell and organismal physiology by regulating large periodic transcriptional programs that encompass anywhere from 15-80% of the genome. The gene-regulatory networks (GRNs) controlling these programs were largely identified by genetics and chromosome mapping approaches in model systems, yet it is unlikely that we have identified all of the core GRN components. Moreover, large periodic transcriptional programs controlling a variety of processes certainly exist in important non-model organisms where genetic approaches to identifying networks are expensive, time-consuming or intractable. Ideally, the core network components could be identified using data-driven approaches on the transcriptome dynamics data already available. Previous work used dynamic gene expression features to identify sets of genes with periodic behavior; our work goes further to distinguish genes by role: core versus their non-regulatory outputs. Here we present a quantitative approach that can identify nodes of GRNs controlling cell or circadian cycles across taxa. There are practical applications of the approach for network biologists, but our findings reveal something unexpected—that there are quantifiable and fundamental shared features of these unrelated GRNs controlling disparate periodic phenotypes.Author summaryCircadian rhythms, cellular division, and the developmental cycles of a multitude of living creatures, including those responsible for infectious diseases, are among the many dynamic phenomena in the natural world that are known to be the eventual output of gene regulatory networks. Identifying the small number of specialized genes that control these dynamic behaviors is of fundamental importance to our understanding of life, and our treatment of disease, but is difficult because of the sheer size of the genomes. We show that the core genes in organisms separated by millions of years of evolution have remarkable similarities that can be used to identify them.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3