Abstract
AbstractDurotaxis – the ability of cells to sense and migrate along stiffness gradients – is important for embryonic development and has been implicated in pathologies including fibrosis and cancer. Although cellular processes can sometimes turn toward softer environments, durotaxis at the level of cells has thus far been observed exclusively as migration from soft to stiff regions. The molecular basis of durotaxis, especially the factors that contribute to different durotactic behaviors in various cell types, are still inadequately understood. With the recent discovery of ‘optimal stiffness’, where cells generate maximal traction forces on substrates in an intermediate stiffness range, we hypothesized that some migratory cells may be capable of moving away from stiff environments and toward matrix on which they can generate more traction. Combining hydrogel-based stiffness gradients, live-cell imaging, genetic manipulations, and computational modeling, we found that cells move preferentially toward their stiffness optimum for maximal force transmission. Importantly, we directly observed biased migration toward softer environments, i.e. ‘negative durotaxis’, in human glioblastoma cells. This directional migration did not coincide with changes in FAK, ERK or YAP signaling, or with altered actomyosin contractility. Instead, integrin-mediated adhesion and motor-clutch dynamics alone are sufficient to generate asymmetric traction to drive both positive and negative durotaxis. We verified this mechanistically by applying a motor-clutch-based model to explain negative durotaxis in the glioblastoma cells and in neurites, and experimentally by switching breast cancer cells from positive to negative durotaxis via talin downregulation. Our results identify the likely molecular mechanisms of durotaxis, with a cell’s contractile and adhesive machinery dictating its capacity to exert traction on mechanically distinct substrates, directing cell migration.
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献