Comprehensive Comparative Genomics Reveals Over 50 Phyla of Free-living and Pathogenic Bacteria are Associated with Diverse Members of the Amoebozoa

Author:

Tekle Yonas I.,Lyttle Janae M.,Blasingame Maya G.

Abstract

AbstractThe association of bacteria with microbial eukaryotes has been extensively studied. Among these the supergroup Amoebozoa containing predominantly amoeboid unicellular protists has been shown to play an important ecological role in controlling environmental bacteria. Amoebozoans not only graze bacteria but also serve as a safe niche for bacterial replication and harbor endosymbiotic bacteria including dangerous human pathogens. Despite their importance, only a few lineages of Amoebozoa have been studied in this regard. Amoebozoa encompasses lineages of extreme diversity in ecology, morphology and evolutionary history. The limited amoebozoans studied are not representative of the high diversity known in the supergroup, and could undermine our understanding of their role as key players in environmental ecosystems and as emerging public health threats. In this research, we conducted a comprehensive genomic and transcriptomic study with expansive taxon sampling by including representatives from the three known clades of the Amoebozoa. We used culture independent whole culture and single cell genomics maintained in our laboratory cultures, and additionally published RNA-Seq data to investigate the association of bacteria with diverse amoebozoans. Relative to current published evidence, we recovered the largest number of bacterial phyla (57) and pathogen genera (49) associated with the Amoebozoa. Using single cell genomics we were able to determine up to 24 potential endobiotic bacterial phyla, some potentially endosymbionts. This includes the majority of multidrug-resistant pathogens designated as major public health threats. Our study demonstrates amoebozoans are associated with many more phylogenetically diverse bacterial phyla than previously recognized. It also shows that all amoebozoans are capable of harboring far more dangerous human pathogens than presently documented, making them of primal public health concern.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3