Multi-omics integration analysis identifies novel genes for alcoholism with potential link to neurodegenerative diseases

Author:

Kapoor ManavORCID,Chao Michael,Johnson Emma C.,Novikova Gloriia,Lai Dongbing,Meyers Jacquelyn,Schulman Jessica,Nurnberger John I,Porjesz Bernice,Liu YunlongORCID,Edenberg Howard J.,Marcora Edoardo,Agrawal Arpana,Goate AlisonORCID,

Abstract

AbstractSignificanceIdentification of causal variants and genes underlying genome-wide association study (GWAS) loci is essential to understanding the biology of alcohol use disorder (AUD).MethodsIntegration of “multi-omics” data is often necessary to nominate candidate causal variants and genes and prioritize them for follow up studies. Here, we used Mendelian randomization to integrate AUD and drinks per week (DPW) GWAS summary statistics with the gene expression and methylation quantitative trait loci (eQTLs and mQTLs) in the largest brain and myeloid datasets. We also used AUD-related single cell epigenetic data to nominate candidate causal variants and genes associated with DPW and AUD.ResultsOur multi-omics integration analyses prioritized unique as well as shared genes and pathways among AUD and DPW. The GWAS variants associated with both AUD and DPW showed significant enrichment in the promoter regions of fetal and adult brains. The integration of GWAS SNPs with mQTLs from fetal brain prioritized variants on chromosome 11 in both AUD and DPW GWASs. The co-localized variants were found to be overlapping with promoter marks for SPI1, specifically in human microglia, the myeloid cells of the brain. The co-localized SNPs were also strongly associated with SPI1 mRNA expression in myeloid cells from peripheral blood. The prioritized variant at this locus is predicted to alter the binding site for a transcription factor, RXRA, a key player in the regulation of myeloid cell function. Our analysis also identified MAPT as a candidate causal gene specifically associated with DPW. mRNA expression of MAPT was also correlated with daily amounts of alcohol intake in post-mortem brains (frontal cortex) from alcoholics and controls (N = 92). Results may be queried and visualized in an online public resource of these integrative analysis (https://lcad.shinyapps.io/alc_multiomics/). These results highlight overlap between causal genes for neurodegenerative diseases, alcohol use disorder and alcohol consumption.In conclusionintegrating GWAS summary statistics with multi-omics datasets from multiple sources identified biological similarities and differences between typical alcohol intake and disordered drinking highlighting molecular heterogeneity that might inform future targeted functional and cross-species studies. Interestingly, overlap was also observed with causal genes for neurodegenerative diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3