A 3D Structural Interactome to Explore the Impact of Evolutionary Divergence, Population Variation, and Small-molecule Drugs on SARS-CoV-2-Human Protein-Protein Interactions

Author:

Wierbowski Shayne D.ORCID,Liang Siqi,Chen You,Andre Nicole M.,Lipkin Steven M.,Whittaker Gary R.,Yu HaiyuanORCID

Abstract

AbstractThe recent COVID-19 pandemic has sparked a global public health crisis. Vital to the development of informed treatments for this disease is a comprehensive understanding of the molecular interactions involved in disease pathology. One lens through which we can better understand this pathology is through the network of protein-protein interactions between its viral agent, SARS-CoV-2, and its human host. For instance, increased infectivity of SARS-CoV-2 compared to SARS-CoV can be explained by rapid evolution along the interface between the Spike protein and its human receptor (ACE2) leading to increased binding affinity. Sequence divergences that modulate other protein-protein interactions may further explain differences in transmission and virulence in this novel coronavirus. To facilitate these comparisons, we combined homology-based structural modeling with the ECLAIR pipeline for interface prediction at residue resolution, and molecular docking with PyRosetta. This enabled us to compile a novel 3D structural interactome meta-analysis for the published interactome network between SARS-CoV-2 and human. This resource includes docked structures for all interactions with protein structures, enrichment analysis of variation along interfaces, predicted ΔΔG between SARS-CoV and SARS-CoV-2 variants for each interaction, predicted impact of natural human population variation on binding affinity, and a further prioritized set of drug repurposing candidates predicted to overlap with protein interfaces. All predictions are available onlinefor easy access and are continually updated when new interactions are published.† Some sections of this pre-print have been redacted to comply with current bioRxiv policy restricting the dissemination of purely in silico results predicting potential therapies for SARS-CoV-2 that have not undergone thorough peer-review. The results section titled “Prioritization of Candidate Inhibitors of SARS-CoV-2-Human Interactions Through Binding Site Comparison,” Figure 4, Supplemental Table 9, and all links to our web resource have been removed. Blank headers left in place to preserve structure and item numbering. Our full manuscript will be published in an appropriate journal following peer-review.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3