Non-rodent mammalian zygotes assemble dual spindles despite the presence of paternal centrosomes

Author:

Schneider IsabellORCID,de Ruijter-Villani MartaORCID,Hossain M. JuliusORCID,Stout Tom A. E.ORCID,Ellenberg JanORCID

Abstract

AbstractThe first mitosis of the mammalian embryo must partition the parental genomes contained in two pronuclei. In rodent zygotes, sperm centrosomes are degraded and, instead, acentriolar microtubule organizing centers and microtubule self-organization guide the assembly of two separate spindles around the genomes. In non-rodent mammals, including human or bovine, centrosomes are inherited from the sperm and have been widely assumed to be active. Whether non-rodent zygotes assemble a single centrosomal spindle around both genomes, or follow the dual spindle self-assembly pathway is unclear. To address this, we investigated spindle assembly in bovine zygotes by systematic immunofluorescence and real-time light-sheet microscopy. We show that two independent spindles form around the parental genomes despite the presence of centrosomes, which had little effect on spindle structure and were only loosely connected to the two spindles. We conclude that the dual spindle assembly pathway is conserved in non-rodent mammals. This could explain whole parental genome loss frequently observed in blastomeres of human IVF embryos.SummaryThis study investigates spindle assembly during the first embryonic division in bovine zygotes that, like human, inherit centrosomes from the sperm. It shows that two independent microtubule arrays form by self-organization around parental genomes with only loosely connected centrosomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3