The electrostatic allostery could be the trigger for the changes in dynamics for the PDZ domain of PICK1

Author:

Stevens Amy O.,He YiORCID

Abstract

ABSTRACTThe PDZ domain is a highly abundant protein-protein interaction domain that exists in many signaling proteins, such as PICK1. Despite the highly conserved structure of the PDZ family, the PDZ family has an extremely low sequence identity, making each PDZ domain unique. PICK1 is the only protein in the human genome that is comprised of a PDZ domain and a BAR domain. PICK1 regulates surface membrane proteins and has been identified as an integral player in drug addiction. Like many PDZ-containing proteins, PICK1 is positively regulated by its PDZ domain and has thus drawn attention to be a potential drug target to curb the effects of substance abuse. The goal of this study is to use all-atom molecular dynamics simulations and the electrostatic analysis program, DelPhi, to better understand the unique interactions and dynamic changes in the PICK1 PDZ domain upon complex formation. Our results demonstrated that the PICK1 PDZ domain shares similar canonical PDZ-ligand hydrogen bonding networks and fluctuations of the carboxylate-binding loop to other PDZ domains. Furthermore, our results are unique to the PICK1 PDZ domain as we reveal that the binding of ligand opens up the binding pocket and, at the same time, reduces the fluctuations of both the central part of the binding pocket and the short loop region between the αA-helix and βC-strand. More importantly, the binding of ligand resulted in charge redistribution at the binding pocket region as well as the N- and C-termini of the PDZ domain that are not a part of the binding pocket. These results suggest that the electrostatic allostery resulted from ligand binding could be the key factor leading to the changes in dynamics which may be associated with the activation of PICK1. Based on these results, an effective drug to target PDZ domain must not only stably bind to the PICK1 PDZ domain but also prevent the electrostatic allostery of the PDZ domain.

Publisher

Cold Spring Harbor Laboratory

Reference81 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Allosterism in the PDZ Family;International Journal of Molecular Sciences;2022-01-27

2. Residue-Level Contact Reveals Modular Domain Interactions of PICK1 Are Driven by Both Electrostatic and Hydrophobic Forces;Frontiers in Molecular Biosciences;2021-01-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3