The state of oligomerization of Rubisco controls the rate of LSU translation in Chlamydomonas reinhardtii

Author:

Wietrzynski Wojciech,Traverso EleonoraORCID,Wollman Francis-AndréORCID,Wostrikoff KatiaORCID

Abstract

AbstractRibulose 1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) is a key enzyme for photosynthesis-driven life on Earth. While present in all photosynthetic organisms, its most prominent form is a hetero-oligomer in which a Small Subunit (SSU) stabilizes the core of the enzyme built from Large Subunits (LSU), yielding, after a chaperone-assisted multistep assembly, a LSU8SSU8 hexadecameric holoenzyme. Here we use Chlamydomonas reinhardtii, and a combination of site-directed mutants, to dissect the multistep biogenesis pathway of Rubisco in vivo. We identify assembly intermediates, in two of which LSU is associated with the RAF1 chaperone. Using genetic and biochemical approaches we further unravel a major regulation process during Rubisco biogenesis which places translation of its large subunit under the control of its ability to assemble with the small subunit, by a mechanism of Control by Epistasy of Synthesis (CES). Altogether this leads us to propose a model where the last assembly intermediate, an octameric LSU8-RAF1 complex which delivers LSU to SSU to form the Rubisco enzyme, converts to a key regulator form able to exert a negative feed-back on the initiation of translation of LSU, when SSU is not available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3