Author:
Park Sehoon,Lee Soojin,Kim Yaerim,Lee Yeonhee,Kang Min Woo,Kim Kwangsoo,Kim Yong Chul,Han Seung Seok,Lee Hajeong,Lee Jung Pyo,Joo Kwon Wook,Lim Chun Soo,Kim Yon Su,Kim Dong Ki
Abstract
AbstractBackgroundAdditional studies on the causal effects of 3-n and 6-n polyunsaturated fatty acids (PUFAs) on the risk of coronary artery disease (CAD) are warranted.MethodsThis Mendelian randomization (MR) study utilized a genetic instrument developed from previous genome-wide association studies for various serum 3-n and 6-n PUFA levels. First, we calculated the allele scores for genetic predisposition of PUFAs in individuals of European ancestry in the UK Biobank data (N=337,129). The allele score-based MR was obtained by regressing the allele scores to CAD risks. Second, summary-level MR was performed with the CARDIoGRAMplusC4D data for CAD (N=184,305). The inverse variance-weighted or Wald ratio method was the main analysis for the summary-level MR, and when multiple single nucleotide polymorphisms were utilized (e.g., linoleic acid), MR-Egger and weighted median methods were implemented as sensitivity analyses.ResultsHigher genetically predicted eicosapentaenoic acid and dihomo-gamma-linolenic acid levels were significantly associated with a lower risk of CAD both in the allele-score-based and summary-level MR analyses. Higher allele scores for linoleic acid level were significantly associated with lower CAD risks, and in the summary-level MR, the causal estimates by the MR-Egger and weighted median methods also indicated that higher linoleic acid levels cause a lower risk of CAD. Arachidonic acid was the 6-n PUFA that showed significant causal estimates for a higher risk of CAD. Higher docosapentaenoic acid and adrenic acid levels showed inconsistent findings in the MR analysis results.ConclusionsThis study supports the causal effects of certain 3-n and 6-n PUFA types on the risk of CAD.
Publisher
Cold Spring Harbor Laboratory