Detecting Insulitis in Type 1 Diabetes with Ultrasound Phase-change Contrast Agents

Author:

Ramirez David G.,Upadhyay Awaneesh K.,Pham Vinh T.,Ciccaglione Mark,Borden Mark A,Benninger Richard K.P.

Abstract

AbstractType 1 diabetes (T1D) results from immune infiltration and destruction of insulin-producing β-cells within the pancreatic islets of Langerhans (insulitis), resulting in loss of glucose homeostasis. Early diagnosis during pre-symptomatic T1D would allow for therapeutic intervention prior to substantial loss of β-cell mass at T1D onset. There are limited methods to track the progression of insulitis and β-cell mass decline in pre-symptomatic T1D. During insulitis, the islet microvasculature increases permeability, such that sub-micron sized particles can extravasate and accumulate within the islet microenvironment. Ultrasound is a widely deployable and cost-effective clinical imaging modality. However, conventional microbubble contrast agents are restricted to the vasculature. Sub-micron sized nanodroplet (ND) phasechange agents can be vaporized into micron-sized bubbles; serving as a circulating microbubble precursor. We tested if NDs extravasate into the immune-infiltrated islet microenvironment. We performed ultrasound contrast-imaging following ND infusion in NOD mice and NOD;Rag1ko controls, and tracked diabetes development. We measured the biodistribution of fluorescently labeled NDs, with histological analysis of insulitis. Ultrasound contrast signal was elevated in the pancreas of 10w NOD mice following ND infusion and vaporization, but was absent in both the non-infiltrated kidney of NOD mice and pancreas of Rag1ko controls. High contrast elevation also correlated with rapid diabetes onset. In pancreata of NOD mice, infiltrated islets and nearby exocrine tissue were selectively labeled with fluorescent NDs. Thus, contrast ultrasound imaging with ND phase-change agents can detect insulitis prior to diabetes onset. This will be important for monitoring disease progression to guide and assess preventative therapeutic interventions for T1D.SignificanceThere is a need for imaging methods to detect type1 diabetes (T1D) progression prior to clinical diagnosis. T1D is a chronic disease that results from autoreactive T cells infiltrating the islet of Langerhans and destroying insulin-producing β-cells. Overt disease takes years to present and is only diagnosed after significant β-cells loss. As such, the possibility of therapeutic intervention to preserve β-cell mass is hampered by an inability to follow pre-symptomatic T1D progression. There are immunotherapies that can delay T1D development. However identifying ‘at risk’ individuals, and tracking whether therapeutic interventions are impacting disease progression, prior to T1D onset, is lacking. A method to detect insulitis and β-cell mass decline would present an opportunity to guide therapeutic treatments to prevent T1D.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3