Abstract
AbstractDysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Herein, we used quantitative mass spectrometry to define the “lipidome” in prostate tumors with matched benign tissues (n=21), independent tissues (n=47), and primary prostate explants cultured with a clinical AR antagonist, enzalutamide (n=43). Significant differences in lipid composition were detected and spatially visualized in tumors compared to matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and PL composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting of altered tumor-related lipid features, via inhibition of acetyl CoA carboxylase 1, significantly reduced cellular proliferation in tissue explants (n=13). This first characterization of the prostate cancer lipidome in clinical tissues revealed enhanced fatty acid synthesis, elongation and desaturation as tumor-defining features, with potential for therapeutic targeting.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献