Motif Analysis in k-mer Networks: An Approach towards Understanding SARS-CoV-2 Geographical Shifts

Author:

Biswas Sourav,Saha Suparna,Bandyopadhyay Sanghamitra,Bhattacharyya Malay

Abstract

AbstractWith an increasing number of SARS-CoV-2 sequences available day by day, new genomic information is getting revealed to us. As SARS-CoV-2 sequences highlight wide changes across the samples, we aim to explore whether these changes reveal the geographical origin of the corresponding samples. The k-mer distributions, denoting normalized frequency counts of all possible combinations of nucleotide of size upto k, are often helpful to explore sequence level patterns. Given the SARS-CoV-2 sequences are highly imbalanced by its geographical origin (relatively with a higher number samples collected from the USA), we observe that with proper under-sampling k-mer distributions in the SARS-CoV-2 sequences predict its geographical origin with more than 90% accuracy. The experiments are performed on the samples collected from six countries with maximum number of sequences available till July 07, 2020. This comprises SARS-CoV-2 sequences from Australia, USA, China, India, Greece and France. Moreover, we demonstrate that the changes of genomic sequences characterize the continents as a whole. We also highlight that the network motifs present in the sequence similarity networks have a significant difference across the said countries. This, as a whole, is capable of predicting the geographical shift of SARS-CoV-2.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3