Deducing high-accuracy protein contact-maps from a triplet of coevolutionary matrices through deep residual convolutional networks

Author:

Li Yang,Zhang Chengxin,Bell Eric W.,Zheng Wei,Zhou Xiaogen,Yu Dong-Jun,Zhang YangORCID

Abstract

AbstractThe topology of protein folds can be specified by the inter-residue contact-maps and accurate contact-map prediction can help ab initio structure folding. We developed TripletRes to deduce protein contact-maps from discretized distance profiles by end-to-end training of deep residual neural-networks. Compared to previous approaches, the major advantage of TripletRes is in its ability to learn and directly fuse a triplet of coevolutionary matrices extracted from the whole-genome and metagenome databases and therefore minimize the information loss during the course of contact model training. TripletRes was tested on a large set of 245 non-homologous proteins from CASP and CAMEO experiments, and outperformed other state-of-the-art methods by at least 58.4% for the CASP 11&12 and 44.4% for the CAMEO targets in the top-L long-range contact precision. On the 31 FM targets from the latest CASP13 challenge, TripletRes achieved the highest precision (71.6%) for the top-L/5 long-range contact predictions. These results demonstrate a novel efficient approach to extend the power of deep convolutional networks for high-accuracy medium- and long-range protein contact-map predictions starting from primary sequences, which are critical for constructing 3D structure of proteins that lack homologous templates in the PDB library.AvailabilityThe training and testing data, standalone package, and the online server for TripletRes are available at https://zhanglab.ccmb.med.umich.edu/TripletRes/.Author SummaryAb initio protein folding has been a major unsolved problem in computational biology for more than half a century. Recent community-wide Critical Assessment of Structure Prediction (CASP) experiments have witnessed exciting progress on ab initio structure prediction, which was mainly powered by the boosting of contact-map prediction as the latter can be used as constraints to guide ab initio folding simulations. In this work, we proposed a new open-source deep-learning architecture, TripletRes, built on the residual convolutional neural networks for high-accuracy contact prediction. The large-scale benchmark and blind test results demonstrate significant advancement of the proposed methods over other approaches in predicting medium- and long-range contact-maps that are critical for guiding protein folding simulations. Detailed data analyses showed that the major advantage of TripletRes lies in the unique protocol to fuse multiple evolutionary feature matrices which are directly extracted from whole-genome and metagenome databases and therefore minimize the information loss during the contact model training.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Protein Structure Prediction and Structural Genomics

2. Progress and challenges in protein structure prediction

3. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods;Proteins,2018

4. Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age;Proteins,2018

5. Zheng W , Li Y , Zhang C , Pearce R , Mortuza SM , Zhang Y. Deep-learning contactmap guided protein structure prediction in CASP13. Proteins. 2019.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3