The dynamic, combinatorial cis-regulatory lexicon of epidermal differentiation

Author:

Kim DanielORCID,Risca Viviana,Reynolds David,Chappell James,Rubin Adam,Jung Namyoung,Donohue Laura,Kathiria Arwa,Shi Minyi,Zhao Zhixin,Deep Harsh,Chang Howard Y.,Snyder Michael P.,Greenleaf William J.,Kundaje AnshulORCID,Khavari Paul A.

Abstract

Transcription factors (TFs) bind DNA sequence motif vocabularies in cis-regulatory elements (CREs) to modulate chromatin state and gene expression during cell state transitions. A quantitative understanding of how motif lexicons influence dynamic regulatory activity has been elusive due to the combinatorial nature of the cis-regulatory code. To address this, we undertook multi-omic data profiling of chromatin and expression dynamics across epidermal differentiation to identify 40,103 dynamic CREs associated with 3,609 dynamically expressed genes, then applied an interpretable deep learning framework to model the cis-regulatory logic of chromatin accessibility. This identified cooperative DNA sequence rules in dynamic CREs regulating synchronous gene modules with diverse roles in skin differentiation. Massively parallel reporter analysis validated temporal dynamics and cooperative cis-regulatory logic. Variants linked to human polygenic skin disease were enriched in these time-dependent combinatorial motif rules. This integrative approach reveals the combinatorial cis-regulatory lexicon of epidermal differentiation and represents a general framework for deciphering the organizational principles of the cis-regulatory code in dynamic gene regulation.HIGHLIGHTSAn integrative multi-omic resource profiling chromatin and expression dynamics across keratinocyte differentiationPredictive deep learning models of chromatin dynamics reveal a high-resolution cis-regulatory DNA motif lexicon of epidermal differentiationModel interpretation enables discovery of combinatorial cis-regulatory logic of homotypic and heterotypic motif combinationsMassively parallel reporter experiments validate temporal dynamics and cis-regulatory logic of the combinatorial motif lexicon

Publisher

Cold Spring Harbor Laboratory

Reference97 articles.

1. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

2. A model of spatially restricted transcription in opposing gradients of activators and repressors

3. Avsec, Ž. , Weilert, M. , Shrikumar, A. , Krueger, S. , Alexandari, A. , Dalal, K. , Fropf, R. , McAnany, C. , Gagneur, J. , Kundaje, A. , et al. (2020). Base-resolution models of transcription factor binding reveal soft motif syntax. BioRxiv 737981.

4. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences

5. ATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activation;Nature Communications,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3